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We study linear arrays of different number of quartic oscillators shaped in the form of a ring when Gaussian
noise �temperature� is added. Frustration is introduced through periodic boundary conditions and repulsive,
directional interactions between neighboring oscillators. We show that these systems have similar dynamic
properties than the arrays of fluxgates magnetometers. We find that there is a critical number of oscillators
separating the regimes arising for systems with few and many oscillators and show that they reach an optimum
ordering for a nonvanishing temperature. We also find that they have a relaxation process with an infinite mean
life that is typical of glassy systems.
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I. INTRODUCTION

The behavior of open dynamical systems in the presence
of external noise is a vast field of research. When noise is
weak the dynamics of the system prevails and a purely de-
terministic behavior is observed. In the opposite extreme, no
trace is left of the dynamical structure of the system. In an
intermediate region in which neither picture is dominant,
noise can play a constructive role. A well known case is that
of stochastic resonance �SR� �1,2� in which noise magnifies a
periodic external driving force switching a bistable system
between its possible equilibrium positions.

A second widely studied case is that of Brownian motors
�3� in which noise makes it possible to profit a broken left-
right symmetry of a periodic potential to allow a net trans-
port of particles along a ratchet. In Ref. �4� we have studied
systems consisting in many elastically coupled particles in a
periodic, externally driven, ratchet potential. It was then
found that a variety of orbits pertaining to the deterministic
dynamics can be recovered by the addition of external noise.

The constructive effect of noise has also been studied in
numerical simulations �5� of large arrays of bistable devices
in a regime of stochastic resonance showing an overall col-
lective enhancement of the effects of an external driving
force. Along this same line of research it was found that
noise sustains the transmission of a periodic signal driving
the first link of a linear array of oscillators in which each one
feeds the next through a directional coupling, provided that
all devices are in the regime of SR �6�.

In �7� we have considered linear arrays that are closed in
the form of a ring. It was found that a traveling wave can be
sustained by noise. In Refs. �8,9� a similar ring involving
fluxgates magnetometers has been studied with the important
modification that the interaction between neighboring de-
vices was taken to be repulsive. In this case the combined

effect of noise and frustration produces spatiotemporal pat-
terns that undergo a complex relaxation process.

The purpose of the present paper is to characterize the
dynamical response of frustrated system as the ones reported
in Ref. �9� consisting in either few or many nonlinear �quar-
tic� bistable oscillators that are arranged in the form of a ring
and coupled through a directional, repulsive, effective inter-
action by which the amplitude of one oscillator drives the
next. Although the quartic potential that we have considered
is different from the one of a fluxgate magnetometer �8� it
nevertheless gives rise to a completely similar dynamic be-
havior. We take this opportunity to provide a quantitative
study of the relaxation process reported in Ref. �9� and also
to provide an analysis of a simple array of few nonlinear
devices from the point of view of dynamical systems that
helps to understand many of the features of these systems.

In these systems frustration can give rise to a dynamical
response consisting in a solitonlike traveling wave along the
ring �9�. We show that it corresponds to a global bifurcation
that remains associated to the collapse of saddle-node pairs
and that this deterministic dynamics can be recovered by the
addition of noise as in Ref. �4� mentioned above. We also
show that there are additional stable roots that proliferate
with a growing number of links of the ring giving rise to the
well known landscape with many equivalent equilibrium
configurations that are typical of statistical frustrated sys-
tems.

The above-mentioned traveling wave consists in the
switching of successive bistable devices from their current
equilibrium positions to the other. This “wave front” can be
assimilated to a dislocation between mismatched sets of de-
vices that regularly alternate opposite equilibrium positions.
The emerging spatiotemporal patterns reported in �9� consist
in the �random� creation and annihilation of such disloca-
tions. We show that such relaxation process has an infinite
average mean life. These features are typical of glassy sys-
tems.

II. MODEL

We consider a one-dimensional chain of overdamped two
well potential oscillators in which the last is linked to the
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first so to form a ring. Let xi be the amplitude of the ith
oscillator, i=0,1 . . . ,N, and V�xi� be a double-well potential
with minima of depth Uo located at x= �c �1�:

V�x� = − Uo� x

c
�2�2 − � x

c
�2� . �1�

These devices are assumed to be coupled by directional in-
teractions. In what follows we use Uo=256 and c=	4Uo /a
with a=32 measures the curvature of the potential barrier
separating both minima. Each device is thus submitted to an
external excitation that is proportional to the amplitude of the
preceding device in the chain. In addition all devices are
assumed to be in contact with uncorrelated sources of Gauss-
ian noise whose variance is represented by a temperaturelike
parameter T. The dynamics is therefore given by the set of
equations

dxi

dt
+ P�xi� = �ixi−1 + ��t� , �2�

where

P�xi� =
�V�xi�

�xi
�3�

is a third degree polynomial and 
��t���t���=2kBT��t− t��.
The coupling constants �i represent attractive ��i�0� or re-
pulsive ��i�0� connections.

If �i�0 ∀N the system has two obvious equilibrium po-
sitions for any value of N in which all devices are in the
same minimum of the potential. For the sake of concreteness
we refer to both minima, respectively, as “left” �L� or “right”
�R�. Since this interaction between oscillators is attractive,
all devices will tend to act coherently. The N devices will
then reach a unique configuration in which all are in the
same minimum of the potential.

The situation in which some of these couplings are nega-
tive is far more interesting. A negative coupling of the ith
device that is presently, say, in the �L� minimum, forces the
�i+1�th device to be in the �R� minimum. If there is an odd
number of negative connections the driving force felt by
each device has a sign that prevents it to stabilize in either of
its two equilibrium positions. When �i and noise have the
proper values the system may engage in a solitonlike travel-
ing wave reported in �9� that reminds the �impossible� Escher
fountain �10�.

When involving a large number of particles, a system as
the one considered here can be related to what is known in
statistical physics as a frustrated systems �11�. In the present
case, frustration arises due to the periodic boundary condi-
tions rather than from the interaction as in the case of a spin
glass. As we will soon see, in a ring with an odd number of
devices and weak enough negative coupling, can be accom-
modated in any of several �actually O�N�� possible different
configurations. Any configuration can be characterized
through a �zero temperature� quasienergy defined as

E = �
i=1

i=N

�V�xi� + �ixixi+1� . �4�

With this convention those equivalent configurations have
the same �minimal� quasienergy.

III. SYSTEMS WITH FEW DEVICES

We will now concentrate our discussion in the simplest
system involving only three bistable oscillators connected by
directional negative connections. From the point of view of
dynamical systems the points of the phase space associated
to N bistable devices can be specified by the N coordinates xi
of the oscillators. The system is at rest in all the points in
phase space in which dxi /dt=0, ∀ i. Out of all these configu-
rations, only few are stable because in most cases upon small
perturbations the equations of motion �2� drive the oscillators
to a different state.

If we assume that all constants �i have the same �nega-
tive� value �, the static configurations correspond to the roots
of the 27th degree algebraic equation

�1

�
P��3�

�x� − x = 0 with P�x� = ac��x/c�3 − �x/c�� , �5�

where P�N�� . � is the Nth iteration of the function P� . �. The
locations of all the roots of Eq. �5� change with the value of
�. If � is weak enough ��� �c� Eq. �5� has 27 roots. To see
this one can define a control parameter �=a /� that is the
only parameter defining the roots of Eq. �5�. In Fig. 1 we plot
the value of the polynomial F�x�= 1

c �� 1
� P��3��x�−x� for three

different values of �. There is a critical value of � for which
several pairs of real roots into double roots. This corresponds
to the critical value �c that for the current values of a turns
out to be −10.731 88. We stress that the only potential pa-
rameter defining this critical value of the coupling is a, the
curvature of the potential barrier at the origin.

The accessible portion of the phase space is restricted to a
cube in which the coordinates of the three oscillators are
limited to the same interval that corresponds to their maxi-
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FIG. 1. Plot of the 27th degree polynomial F�x� of Eq. �5� for
three different values of �. Panel �a� �� �c, panel �b� �= �c
=2.981 77, and panel �c� �� �c. Note that for smaller values of
� only survive three roots until �=1.
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mum amplitude. In Fig. 2 we represent with big gray �orange
online� dots in this three-dimensional phase space the equi-
libria that are stable under small perturbations while the re-
maining unstable roots are represented by small black dots.
Six stable rest positions correspond to a node having a
closely neighboring saddle point that are related to the pairs
of roots indicated above. These are stable along two direc-
tions but unstable along the third one. When the interaction
becomes stronger than �c, the stable and saddle points merge
and the system is forced to follow an orbit that goes through
positions that are close to the static equilibria of a lower
value of the coupling �see Fig. 3�. This transition corre-
sponds to a global bifurcation �12� in which several stable
roots disappear at the same time and are replaced by a stable,
periodic orbit with a period P that approximately follows
the edges of the cube of Fig. 2. The three oscillators take

successive turns in changing from the �R� to the �L� mini-
mum and can thus be regarded as a traveling wave along the
ring. The frequency �	=2
 / P� of this periodic orbit changes
with �.

Besides the above dynamical response of the system,
there are two other static equilibrium positions without
neighboring saddle points that remain symmetrically located
in opposite vertices of the cube. These correspond to roots of
P�x� /�=x and correspond to having all devices on the same
side of the two well potential and survive for rings with any
�odd� number of devices. These configurations are always
stable until the strength of the coupling becomes �=−a.
However, their basin of attraction becomes negligible for an
increasing number of devices.

Let us now consider the system for �� �c i.e., before
the global bifurcation has taken place but submitted to exter-
nal independent sources of random, Gaussian noise in each
oscillator. Except for obvious fluctuations, it is seen that the
same orbit corresponding to a higher value of � is recov-
ered. The addition of noise is therefore equivalent to an ef-
fective �� �c �see Fig. 4�.

The presence of noise increases the probability of jump-
ing across the central barrier of the bistable potential. This
feature adds a dependence of 	 on the noise amplitude T.
External noise therefore allows to recover the same dynamic
that a stronger negative interaction would have produced.
This is a completely similar situation as the one found in �4�
for the case of an externally driven system. The effects of
noise that in this latter case may be considered as forcing the
system to cross a separatrix, in the case of an autonomous
system considered here produces instead a global bifurca-
tion.

IV. SYSTEMS WITH MANY DEVICES

The discussion for a three-dimensional phase space can be
generalized to many degrees of freedom provided that the
same basic mechanism of frustration is preserved. Most of

-5
0

5x1

-5

0
5x2

-5

0

5

x3

-5
0

5x1

-5

0
5x2

FIG. 2. �Color online� Location of the roots of Eq. �5� for �
� �c. Big, gray �orange online� dots correspond to static equilibria.
Small black dots represent unstable rest positions that except that
that of the origin, are saddle points. As an example we show with a
line the orbit followed by the system when it is initially located in
that point.
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FIG. 3. �Color online� The same as in Fig. 2 but with �� �c.
The system has been initially located at the unstable point of the
origin. Any small perturbation drives the system into the stable,
periodic orbit shown in full line.
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FIG. 4. �Color online� The same as in Fig. 2 but with noise. If
initially located at the origin, the system is driven into a noisy orbit
that is similar to the one shown in Fig. 3 that is obtained without
noise and with a greater negative coupling. Notice that the system
tends to stay for a longer time in the neighborhood of the stable
equilibria.
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the features of statistical frustrated system with a large num-
ber of degrees of freedom are already displayed in the three-
dimensional phase space. The static configurations parallel
the many equivalent minima in the free-energy landscape of
statistical frustrated systems. In addition static configurations
appear to be organized forming basins of attraction. A mod-
erate Gaussian noise does not completely eliminate such ba-
sins and the phase space appears to be fragmented in a single
periodic orbit plus static configurations.

The underlying mechanism producing the solitonlike
waves that we have discussed above can be extended to sys-
tems with an increasing number of devices. In what follows
we concentrate in the case in which � is such that a soliton-
like wave is present. Under these conditions, the main
change that is brought by the presence of many devices is
that several traveling waves may coexist. The ring thus ap-
pears to be segmented in regions. In each of them all devices
alternate in their equilibrium positions and the border be-
tween two of these regions consists in a pair of oscillators
that temporarily are in the same equilibrium positions. The
changes in the oscillator states produce a wave front that
travels around the ring.

It is practical to map the dynamical system composed by
the ensemble of bistable devices into one in which are only
involved traveling dislocations that are composed by pairs
of neighboring oscillators that are in similar equilibrium
positions say . . .RLRLLRLR. . .. Within this picture, two
colliding dislocations consist in a pattern such as
. . .RLRLLLRLR. . .. Both dislocations may then annihilate
each other restoring the chain to an ordered pattern
. . .RLRLRL. . .. On the other hand, if a thermal fluctuation
changes, . . .RLRLRLRL. . . → . . .RLRLLLRL. . ., it can be
interpreted as the �thermal� creation of a pair of dislocations.

The coupling between neighboring oscillators also causes
that interaction of the dislocations with each other. This in-
teraction depends upon the instantaneous value of the coor-
dinates of close and more distant neighboring oscillators.
This, together with the presence of external noise, causes that
two interacting dislocations change their traveling speeds
getting closer, colliding and annihilating each other. A com-
plex relaxation process therefore takes place by which dislo-
cations may be annihilated but also created by thermal fluc-
tuations. This produces the complex spatiotemporal patterns
that have been reported in �9�. The relaxation process is es-
sentially governed by the range of the interaction between
dislocations. As a consequence, there exists a critical number
Nc that separate two regimes that respectively hold for few
and many devices. For N�Nc the number of dislocations
that are introduced by the initial conditions rapidly drops
until a minimum value of 1 or 0 is reached, respectively, for
N odd or even.

The value of Nc can be estimated from the fact that, in
order to survive, all dislocations must be equally spaced;
therefore, N=nd�2+n� where nd represents the number of
dislocations �nd�1� and n represents the number of devices
between dislocations. Since the minimum value of n is 1,
Nc=3nd relates the critical value of N with the number of
dislocations.

For N�Nc a short transient leads to configurations in
which all the surviving dislocations are nearly equally sepa-

rated. Since their interaction does not vanish, the distance
between them gradually changes and nd�t� drops at a slower
rate, nd�t� representing here the number of dislocations that
survive at time t. In Fig. 5 we show the nd�t� as a function of
the number of devices of the ring, after a large number of
time steps �t�105�. Notice that the system has the surprising
property that a moderate temperature favors a greater anni-
hilation of dislocations. The minimum value of nd�t� is there-
fore attained for a nonvanishing strength of the noise.

The tail of the function nd�t� is shown in Fig. 6 for differ-
ent temperatures. It is clearly seen that they closely follow a
power law nd�t�� t−�. Time t is measured in integration steps.
As expected, � changes with an increasing intensity of noise.
For a very low temperature � becomes small but does not
vanish. The fact that nd�t� is not a constant for t→ is a
signature of the range of the interaction between dislocations
is of the same order than the size of the system.

The temperature scale has an upper bound that is deter-
mined by the Kramers escape time that is in turn associated
to the potential barrier separating both minima of the quartic
potential. When the temperature exceeds such limit, sponta-
neous transitions between the two minima become increas-
ingly probable causing the spontaneous creation of pairs of
dislocations. On the other hand, as long as the temperature
stays below this upper bound, the relaxation process can take
place gradually eliminating dislocations. In all cases the ex-
ponent of the decay law never exceeds �=2 thus producing
an infinite average relaxation time.

V. CONCLUSIONS

We have revisited the dynamical system explored in Refs.
�8,9� investigating its behavior when both the number of
nonlinear devices and the temperature are allowed to change.
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FIG. 5. The number of dislocations nd�t� surviving after t
�105 iterations is plotted as a function of the number of devices of
the ring for different temperatures. Below Nc�15 all asymptotic
static configurations have been neglected. For clarity scattered sym-
bols are used only for T=0; small circles correspond to N odd while
crosses correspond to N even. The dashed lines are the linear fit to
the results obtained for different temperatures; T is related to the
intensity of noise through �=2kbT /Uo. The slope of these lines is
the inverse of the average number of devices separating each pair of
dislocations. Notice that asymptotically, fewer dislocations are ob-
tained for a nonvanishing temperature.
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The system that we have considered consists in a chain of
bistable devices �quartic oscillators� with directional, effec-
tive, repulsive interactions among them that is proportional
to the amplitude of the preceding oscillator in the ring. These
ingredients produce a frustrated system. For very low values
of the interactions the system can only exist at rest in a
number of equivalent secondary minima and for larger val-
ues it produces a dynamical response to frustration through
solitonlike waves. We found that a moderate amount of noise
is equivalent to a change in the strength of the coupling
between consecutive devices and allows to recover the soli-
tonlike wave.

The transition induced by noise is reminiscent to transi-
tions between heteroclinic orbits �12� in which forces the
system into one of two possible equivalent orbits. What is
found in this system should instead be understood as the
collapse of several saddle-node pairs giving rise to a global
bifurcation. Noise therefore drives the system out of rest into
a single possible periodic orbit in which all its devices take

turns in switching from one minimum of the bistable poten-
tial to the other. An additional effect of noise is to change the
frequency of the noisy periodic orbit.

The basic ingredients of the solitonlike frustration waves
can easily be discussed when the ring involves few bistable
devices. When it involves many units the system breaks up
in groups of consecutive links that are in opposite minima.
Such groups are separated by a pair of oscillators that tem-
porarily live in the same minimum. These are traveling wave
fronts and can be regarded as dislocations that interact via
long range interactions. The relaxation process that takes
place when the system is initialized at random involves com-
plicated spatiotemporal patterns consisting in the collision
and annihilation of such dislocations.

We found that this process is essentially governed by the
range of the interaction between dislocations. This is related
to a critical number of devices that separates the dynamics of
rings having few and many links. Below that critical number
there is an exponential decay of the number of dislocations.
Above, the decay follows a power law with an infinite aver-
age mean life. This process also depends upon the intensity
of noise. The stationary configurations of a system with an
odd �even� number of nonlinear devices are those having an
odd �even� number of dislocations that are exactly equally
spaced. The infinite mean life of the relaxation process indi-
cates that as the system approaches one of these configura-
tions, it finds higher barriers that turn increasingly improb-
able to visit configurations with a different symmetry, i.e.,
with a different �odd or even� number of dislocations. One
could thus argue that these systems face some kind of broken
ergodicity extending this concept that is only strictly appli-
cable to systems having well defined energy and equilibrium
conditions. All these features make this system of coupled
bistable devices to behave as a glassy system.

The systems that we have considered here provide another
example of the ordering property that can have the addition
of moderate noise to an otherwise disordered system. This is
so because, given a large number of iteration steps, the mini-
mum number of dislocations and hence the greatest order are
attained for a nonvanishing temperature.
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FIG. 6. Value of nf�t� representing the number of dislocations
that survive after a time t. Time is measured in integration steps.
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lations were performed for N=1003 devices.
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